
Motionlogger 2

– Software implementation of data logging at high frequencies

Jens Svensson, IEA, LTH April 2010

In today's industry the need for fast
logging of measurements is increasing.
Existing systems used by Tetra Pak AB
have a maximum logging frequency
which is inadequate. As a result of this
Tetra Pak gave Industriprojektbyrån AB
the task of developing a measuring
system for this purpose.
Industriprojektbyrån AB has before the
start of the thesis work developed the
hardware set up for the system. This
article describes the further development
of the system which is about developing
the software part of the system. The
software development includes designing
the software and implementing the code.
And the final part of the thesis is testing
of the system.

Tetra Pak has need for fast logging of data
from encoder sensors. Encoding sensors
are primarily used for measuring position
of rotating axes. According to Anders
Sundberg the frequency of the
phenomena’s that the system is designed
to detect is typically up to 3-400 Hz. For
further uses it also could be interesting to
see the output from the control loop
which goes up to 2 kHz. Tetra Pak uses an
existing system for logging measurements
from incremental encoders that has a
maximum logging frequency of 2 kHz. The
logging frequency of 2 kHz is not enough
today. As a result of this Tetra Pak gave
Industriprojekbyrån AB the task of
developing a measuring system with high
logging frequency. Industriprojektbyrån
AB has before the start of the thesis work
developed the hardware set up for the
system. The specification for the thesis
was to develop a system that could log

data under 30 s with a logging frequency
of at least 50 kHz. In addition to the
logging of data from encoder sensor the
system can log data from analog and
digital sensors.

Operating system

The first step in development of the
system was to choose and configure the
operating system. Since the application is
developed as a real time application, the
operation system needs to have a
configuration that supports the real time.
Real time (RT) means that the application
is subjected to timing deadlines i.e. the
application needs to finish a task within a
certain time. A small evaluation was made
to determine what operating system to
use. The result fell on the Linux based,
open source Xubuntu. To configure
Xubuntu for running a real time
application it is necessary to recompile the
kernel. The kernel is a central component
for the operation system. The kernel
handles the communications between the
applications and the hardware. The reason
for the recompilation of the kernel is that
some non standard options needs to be
enabled. The most important option here
is to enable the real time support for the
kernel and to disable as many as possible
of the system management interrupts.
System management interrupts is a special
kind of hardware driven interrupts that
handles power management for the
computer.

Software design

The best way to explain the system
designed is by a block flow diagram, see
Figure A.

Figure A. Block flow diagram for the application. Arrows represent communication paths.

The application is designed as a servlet
and will run under Apache Tomcat. A
servlet is server application that is
implemented entirely in Java. Apache
Tomcat is a web server for servlets. The
design is based on and use parts of the
Open Process Logger framework. The
Open Process Logger is an open source
framework for collecting, storing and
presenting data from PLC (Programmable
Logic Controller) systems and is developed
by Industriprojektbyrån AB.

The communication with the hardware is
done via a Java Native Interface (JNI). This
is by far the largest and most complicated
part of the software. All logging algorithms
and RT-logic are located here.

When logging is complete the data is kept
in a special container class. Logics for post
processing of the data are located in this

container. Database communication is
also done from this class. The data
container and the controller are
implemented in pure Java. The only
purpose for the controller is to work as a
communications’ hub. Both the controller
and the data container are constructed in
such a way that only one instance of each
may exists simultaneously.

The user interface is constructed as a
webpage using JSP and html. The webpage
can naturally be accessed via a web
browser. The logging functions are
activated from the webpage and the data
presented as graphs. For data
presentation the embedded graphviewer
from the Open Process Logger is used.

Data
container

Web browser

Servlet

JSP/html

Controller

Hardware

JNI

init

Database

Java Native Interface

The Java Native Interface is a feature of
the Java language which makes it possible
to declare methods in Java and implement
them in native language. In this
application, C is the native language used.
Using Java Native Interface compromises
the portability feature of Java but instead
gets access to the C real time features.

Post processing

The system also has implemented
functions for derivation and filtering of the
data. The system has functions for the 1st
or 2nd derivative. It is also possible to low
pass filter the raw data from the logging
and in additions the data can be stored in
a database. The database is part of the
Open Process Logger framework and
implemented in Apache Derby.

System testing

Continuously during the development the
system has been subjected to a series of
test regarding the functionality and
performance of the system. The most
important results are the logging
frequencies for the system. The
frequencies are shown in Figure B. The
final system is able to log data for time
periods up to 15 s. Also important is the
tests regarding the determinism of the
system. The tests showed that the system
was not fully deterministic but relatively
close.

Conclusions

The thesis work resulted in fully functional
system according to the original
specifications. All of the specifications are
not accommodated due to physical
limitations of the hardware. The system is
however not complete for delivery to the
customer due to additional requests from
the costumer. These requests have
appeared naturally during development of
the system. The extensive workload made
it impossible to address these during
thesis.

Future works

The suggested future works is divided into
three steps. The first step is about
finishing the development so the system
can be delivered. There are only two
issues that need to be addressed and they
are: modifications in the memory
management functions and a method for
deleting of old data from the database.
The second step is about improving the
performance for the system and
eliminating the short comings related the
hardware. In very short form this could be
done by upgrading the computer and
compile a new kernel. The last step is
about post processing of the data and
improvement of the user interface. The
post processing of the data include filters,
Fourier transformation and exporting
data.

Logging type: Frequency:

One encoder channel 127 kHz

All encoder channels 43 kHz

One analog channel 48 kHz

Two analog channels 15.5 kHz

Digital 160 kHz

Figure B. Logging frequencies for the system

